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SUMMARY 

A data assimilation procedure to incorporate measurements into a non-linear tidal model by using Kalman- 
filtering techniques is developed. The Kalman filter is based on the two-dimensional shallow water 
equations. To account for the inaccuracies, these equations are embedded into a stochastic environment by 
introducing a coloured system noise process into the momentum equations. The continuity equation is 
assumed to be perfect. The deterministic part of the equations is discretized using an AD1 method, the 
stochastic part using the Euler scheme. Assuming that the system noise is less spatially variable than the 
underlying water wave process, this stochastic part can be approximated on a coarser grid than the grid used 
to approximate the deterministic part. A Chandrasekhar-type filter algorithm is employed to obtain the 
constant-gain extended Kalman filter for weakly non-linear systems. The capabilities of the filter are 
illustrated by applying it to the assimilation of water level measurements into a tidal model of the North Sea. 
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1. INTRODUCTION 

To describe and predict tidal flow, one usually employs deterministic numerical models based on 
the non-1in:ar shallow water equations. When the meteorological effects are small or can be 
neglected, these models produce accurate results. However, during stormy periods, deterministic 
models are far from perfect. Errors are introduced by fluctuations in the meteorological input or 
by the poorly known influence of the wind on the water movement described by the wind friction 
coefficient. Furthermore, considerable uncertainty is associated with the open boundary condi- 
tions, since it is possible that severe storms outside the domain of the problem create surges which 
propagate across such a boundary into the model. Therefore a number of statistical methods, i.e. 
simple empirical or black box models derived from series of observations, have been developed 
for the on-line prediction of storm surges. These models have the capability of incorporating on- 
line measurements into the prediction process to adapt the predictions continuously to changing 
conditions. However, since the deterministic numerical models have a more physical basis and 
provide a more realistic description of the water movement, the use of a data assimilation 
technique to incorporate the measurements into a numerical model is of course preferable. 
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Data assimilation techniques have received considerable attention in the meteorological 
literature. The most common data assimilation technique used in numerical weather prediction 
is optimal interpolation, in which some estimates of the error statistics of the numerical model are 
used to correct the results of the model using the measurements available. However, since these 
error statistics have to be determined by adopting some ad hoc statistical assumptions, the 
correction produced by optimal interpolation is not consistent with the underlying numerical 
model. As a consequence, in the case of a shallow water flow model describing the complicated 
flow pattern due to an irregular geometry, the use of optimal interpolation yields unrealistic 
corrections or introduces instabilities. 

A new approach to data assimilation is Kalman filtering. In order to use a Kalman filter for 
incorporating data into a numerical shallow water flow model, the model is embedded into a 
stochastic environment by introducing a system noise process. In this way it is possible to take 
into account the inaccuracies of the underlying deterministic system. By using a Kalman filter, the 
information provided by the resulting stochastic-dynamic model and the noisy measurements 
taken from the actual system are combined to obtain an optimal (least-squares) estimate of the 
state of the system. Kalman filtering is similar to optimal interpolation. However, with a Kalman 
filter the error statistics of the numerical model are determined by using the stochastic extension 
of the model. Therefore the correction produced by this filter, unlike in the case of optimal 
interpolation, is guaranteed to be consistent with this stochastic model, even in the case of very 
irregular flow patterns. 

In the last decade, Kalman filtering has gained acceptance as a powerful framework for data 
assimilation, e.g. in meteorology,’ oceanography3 and  hydraulic^.^, However, most applications 
of Kalman-filtering techniques deal with one-dimensional models. Although the extension of 
these one-dimensional filtering techniques to two space dimensions would not give rise to 
conceptual problems, it would impose an unacceptably greater computational burden. In order 
to obtain a computationally efficient filter, simplifications have to be introduced. Unfortunately, 
there are serious problems with the more obvious simplifications one might consider. 3 , 6  As a 
consequence, Kalman-filtering techniques have to date seldom been applied to realistic two- 
dimensional filtering problems. Parrish and Cohn developed a filter for a linear two-dimensional 
numerical model based on the assumption that errors at large distance points are not correlated. 
As a result the computational complexity of the filter can be reduced dramatically, and they 
showed that their filter is indeed computationally feasible for numerical weather prediction. 
However, for most shallow water flow problems the domain of the problem is relatively small, so 
that errors are highly correlated in space and this approach cannot be employed. Therefore 
Heemink6. developed a time-invariant filter approach based on the linear two-dimensional 
shallow water equations. By using a Chandrasekhar-type filter algorithm, the special structure of 
the filtering problem is exploited to obtain an efficient implementation. 

All previous applications of filtering theory to two-dimensional shallow water flow identifica- 
tion problems have been based on a linear deterministic model. In this paper, building on the 
ideas presented in Reference 6, we develop a data assimilation procedure for weakly non-linear 
tidal models. The approach is based on the non-linear two-dimensional shallow water equations. 
In Section 2 these equations as well as the boundary conditions are embedded into a stochastic 
environment. The equations are approximated numerically in Section 3 by using an AD1 scheme 
for the deterministic part and the Euler scheme for the stochastic part of the equations. By 
defining a state vector that consists of the water levels and velocities at all the grid points as well 
as the uncertain parameters introduced into the boundary conditions, the model is rewritten in 
state-space form in Section 4. Employing a constant-gain extended Kalman filter for weakly non- 
linear systems in Section 5, the on-line measurements of the water level available can be used to 
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estimate the shallow water flow. By using this suboptimal filter approach, these estimates are 
determined using the non-linear shallow water equations, while the time-consuming second- 
moment equations are solved using the linearized ones. Since the filter is time-invariant, these 
second-moment computations do not have to be recomputed as new measurements become 
available, but can be solved once and off-line. Furthermore, the fact that the system noise is less 
spatially variable than the underlying process can be exploited to reduce the computational 
burden by employing a Chandrasekhar-type algorithm. In Section 6 a number of applications of 
the approach are described in detail to illustrate the performance of the filter. 

2. STOCHASTIC SHALLOW WATER EQUATIONS 

The two-dimensional non-linear shallow water equations do not perfectly describe the shallow 
water flow in coastal waters. Therefore we embed these equations into a stochastic environment. 
The resulting momentum equations are 

au au au a h  U 1 aPa 
- + u- + u- + g- - f u  + A(u, u)- = z, + s, - --, 
at ax ay ax D + h  P w  ax 

a0 a0 a U  ah  v 1 aPa 
at ax ay ay D + h  P w  aY 
-+ u - +  u-+g-  + f u  + A(u, u)- = Ty + s, ---, (3) 

dS, = -a1S,dt+odW,, (4) 

where h ; 3  'he water level, u and u are the water velocities in the x- and y-directions respectively, D 
is the depth of water,fis the Coriolis parameter, 1 is the bottom friction coefficient, z, and t,, 
(equal to yV2cos$ and yV2sin $ respectively, with y the wind friction coefficient, V the wind 
speed and $ the wind direction) are the wind stresses in the x- and y-directions respectively, p w  is 
the density of water, pa is atmospheric pressure, g is the acceleration due to gravity, S, and S, are 
coloured system noise processes, W, and W, are Brownian motion processes with statistics 

E(dW,(x,y,t)} = 0, ( 5 )  

E { d W,(x, Y, t ) }  = 0, (7) 

(8) 

E ( d  Wu(xi, ~ 1 ,  t )  d Wu(xz, YZ, t ) }  = 0, (9) 
and C I ~ ,  CJ and 6 are constants. 

Here we note that since CJ is constant, the stochastic differential equations ( 2 )  and (4) are the 
same in the i to and Stratonowitz sense and can be manipulated by formal rules.9 

By introducing the system noise processes into the momentum equations according to 
equations (1)-(9), it is assumed that the largest errors of the underlying deterministic model are 
introduced by the uncertainty in the wind stress input, i.e. by the fluctuations in the wind input or 
by the poorly known influence of the wind on the water movement described by the wind friction 
coefficient. In this way the coloured noise processes S ,  and S, are corrections on the wind stress 
inputs T~ and T~ respectively. The statistics of S ,  and S, can be determined e a ~ i l y : ~  

E{dWu(xl,Y1,t)d~u(x,,Y2,t)} = exp{-~JC(x, -X2)2+(Y1-Y2)21)d4 (6)  

E { d W,(X, 9 Y 1,  t )  d WU(X2, Y,, t ) >  = exp { - GJC(X1 - x2)2 + (Y 1 - Y2)21 1 dt, 

E(S,(X,Y, t ) } = O ,  (10) 
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(14) E{SU(Xl, Yl, tl)SU(XZ> Yz, t z ) >  =o. 

The parameters a1 and 6 are measures of respectively the temporal and spatial variability of the 
errors concerned with the momentum equations. 

While the noise processes Wu and W, are introduced to model the uncertainty associated with 
the momentum equations, the continuity equation is assumed to be perfect: 

-+ + = 0. (15) 
a h  a[u(D + h)] a[v(o + h ) i  
at ax a Y  

When the water is rather deep, the non-linearities in the equations (l) ,  (3) and (15) are small and 
it is possible to approximate these equations by the linear ones: 

au ah  U 1 aP, -+g- - f u + A -  = 7, + S” ---, 
at ax D P w  ax 

av a h  U 1 a P  - + g - + + u + A - =  T y + S u - - >  
P w  dY’ at ay D 

at ax ay = 0. ah  a(uD) d(vD)  -+-+- 
The wave motion is completely described by the non-linear equations (1)-(9) and (15) or the 

linear ones (16), (2), (17), (4)-(9) and (18) provided that initial values and closed and open 
boundary conditions are given. At a closed boundary the velocity normal to the boundary is zero: 

UL = 0. (19) 
There is usually a considerable uncertainty associated with the open boundary conditions, since it 
is possible that severe storms outside the domain of the problem create surges which propagate 
across a boundary into the model. To model these uncertainties, a stochastic water level 
boundary condition is applied at an open boundary: 

= f ( t )  + Hb, (20) 

dHb = - Hb d t  + obd wb, (21) 
Here uZ and ab are constants. The Brownian motion process wb is assumed to be independent of 
the other system noise components, with statistics 

E{dWb(t)} = O ,  
E{ d Wb(t) d Wb(t)} = a id t .  

As a result the statistics of the coloured noise process Hb are 



DATA ASSIMILATION FOR NON-LINEAR TIDAL MODELS 1101 

In the non-linear case it has also to be assumed that at  the inflow the velocity parallel to  the open 
boundary is zero: 

UII =o. (26) 
All the parameters of the noise processes have to be specified. Unfortunately this knowledge is 

very poor. However, as is well known, the filter estimates are not very sensitive to the noise 
statistics. lo* 

3. NUMERICAL APPROXIMATION 

The deterministic part of the shallow water equations is approximated by using an AD1 method, 
The numerical scheme was developed by Stelling" and is based on the well known work of 
Leendertse. It is unconditionally stable and lacks artificial viscosity. Defining a space-staggered 
grid G,, the finite difference equations to approximate the homogeneous part of the linear 
equations are as follows. 

Step 1 

explicit 
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implicit 

For details such as the numerical boundary treatment we refer to Reference 12. 
The stochastic differential equations are approximated using the Euler scheme: 

S:" = (1  -a,At)S:+a(W:+'- W:) ,  

S:+' = (1 -a1At)S:+a(Wf+'- Wf). 

(33) 

(34) 

The meteorological input processes zx, z,, and pa as well as the noise processes S,  and S ,  are 
defined on a grid G2. Since these processes are (assumed to be) less spatially variable than the 
underlying water wave process, G2 is much coarser than G, and therefore interpolation is 
necessary to obtain these processes in the grid points of G,. 

The numerical treatment of the stochastic open boundary condition is similar to the approx- 
imation of the system noise processes. 

4. STATE-SPACE REPRESENTATION OF THE MODEL 

The state-space representation of the linear model is obtained by defining an n-vector X,, that 
contains the water level and velocities at all the grid points of G,. The finite difference scheme can 
now be rewritten as a deterministic system 

Here A, B, C and D are coefficient matrices representing the AD1 scheme and u,, is the 
meteorological input given on the grid G,. The matrix A represents a sequence of linear 
operations to interpolate the meteorological input at the grid points of G,. Similarly, we define 
the q-vector P,, to contain the coloured noise processes introduced in the open boundary 
conditions and the p-vector S,, to consist of the system noise process at all the grid points of G2. 
Since the system noise is less spatially variable than the water wave process, we have p < n .  
Introducing the noise process only in the second half time step of the finite difference equations, 
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the stochastic-dynamic model can be described by 

+[ . . I  + (37) 

Here E is a coefficient matrix representing the open boundary treatment and Wt", contains the 
increments of the Brownian motion processes introduced in the open boundary conditions. 
Similarly, W,, is a p-vector consisting of the noise components at all the grid points of G2. The 
covariance matrices of W:k and W,, can be derived easily from equations (22)-(23) and (5)-(9) 
respectively. The model is of the hyperbolic type. As a consequence the effect of the initial 
condition, which is often poorly known, vanishes after a limited period of time. Equation (37) can 
be rewritten as 

and Q* as the covariance matrix of W:. 
In the non-linear case the stochastic-dynamic system representation of the model becomes 

5. KALMAN FILTERING 

Assuming that measurements of the water level are available at m grid points of GI, the 
observation equation can be derived easily: 

(40) 
where the m-vector Z,, contains the measurements taken at time kAt and V,, is the white 
measurement noise with covariance matrix R. V,, and WE are assumed to be mutually independ- 
ent. In practice we may assume that the measurement errors at different locations are mutually 
independent and have equal variance, so R is diagonal with elements r 2 .  If necessary, equa- 
tion (40) can be modified to account for the fact that not all measurements are available at grid 
points. 

It is desired to combine the measurements taken from the actual system and modelled by 
relation (40) with the information provided by the system model (38) or (39) to obtain an estimate 
of the system state Y,,. Let us first consider the linear case. If P ( k l l )  is defined as the least-squares 
estimate of the state Y,, using the measurements Z,,, Z,,, . . . , Z,,, Ibk, the recursive filter 
equations to obtain this quantity can be summarized as follows:6 

(41) 

(42) 

Zr, = MY,, + Vtk 7 

A*P(k + 11 k )  = B*P(kI k )  + U* & + I  ' 

Q(k  + 1 Ik + 1 )  = P(k + 1 Ik) + KIZt,+l - MP(k + 1 lk)], 
where the steady state Kalman filter gain K can be determined by the Chandrasekhar-type 
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equations l4 

A*Y(k + 1 )  = B*S(k), (43) 

(44) 

(45) 

(46) 

(47) 

(48) 

G(k+ 1 )  = G(k)+Y(k+ l)L(k)Y(k+ l)TMT, 

R'((k+ 1) = R'(k) + MY(k + l)L(k)Y(k + l)MT, 

K(k + 1) = G(k + l)Re(k + l)- ' ,  

S(k  + 1) = (I - KM)Y(k + l), 

L(k + 1 )  = L(k) + L(k)Y(k + l)TMTRE(k)-lMY(k + t)L(k), 

with initial conditions 
A*Y(l) = A, 

G(0) = 0, 

R'(0) = R, 

L(0) = Q* 
The equations are iterated until 

II K(k + 1) - K(k) I1 < E I1 K(k) 11, (53) 
where E is prespecified. Since the underlying deterministic system is of the hyperbolic type, the 
number of iterations required depends on the travelling times of the waves in the model and 
therefore on the size of the domain of the problem. 

Let us now consider the non-linear model (39). The linearized Kalman filter can in this case be 
summarized as follows: 

A**(k+ l ( k )  = b*(Q(k(k ) )+u t+ , ,  (54) 

Q(k  + 1 Ik + 1 )  = P(k + 1 Ik)+ Ktk[Zt,+, - MQ(k + 1 l k ) ] .  ( 5 5 )  

measurement locations 
* grid points of the system noise 

Figure 1. North Sea model 
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The time-varying Kalman filter gain K, is determined by linearizing b* about a reference 
trajectory and by using the filter equations for linear time-varying systems.’ In our case the time 
variations of K,, are only caused by the non-linearities of b*. However, if the water is rather deep, 
these non-linearities are relatively small and the time variations of K,, are small too. Moreover, 
since deterministic tidal models usually provide a reasonable description of the tidal movement, 
the correction produced by the Kalman filter using the measurements is small in relation to the 
deterministic results. Therefore a relatively small error in K,, hardly affects the estimates of the 
filter and we may expect that a constant-gain extended Kalman filter will produce estimates that 
are nearly optimal.15 This filter is based on the linearization of b* about an equilibrium state and, 
as a consequence, in our case this filter is time-invariant: 

A*P(k+ Ilk) = b*(P(kIk))+u,f+,, (56) 

Q(k + 1 Ik + 1) = P(k + 1 Ik)+ K[Ztk+, - MQ(k + 1 lk)], (57) 

where the Kalman gain is determined by solving equations (43)-(52) based on the linear 
model (38). 

6. FILTERING RESULTS 

Before the filter can be safely applied to prototype situations, it is necessary to demonstrate that it 
can perform adequately under known conditions. Therefore we first developed a filter based on a 
relatively simple numerical model describing the water movement in the North Sea and the 
English Channel. In Figure 1 the grid G,  covering this area is shown. Here Ax = 18.5 km, 
Ay = 19 km and At = 10 min. The grid G, and the measurement locations are also shown in 
Figure 1. The parameters of the noise processes are chosen to be = 
6 = and ct2 = 0.5 x Water level data are created by using the model 
and a realistic meteorological input during a stormy period. At the open boundary we do not 
consider the tide and prescribe the water level to be zero. Measurement errors with r = 5 cm are 
simulated by means of a random generator. This data set was used to estimate the water levels 
and velocities. While filtering the data it was assumed that the meteorological input was zero. 

a, = 0 5  x 
ob = 0.5 x 

. * * A 4  

Figure 2. Wind velocities 
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Therefore without using the generated data the estimates of the water velocities produced by the 
filter would be zero too. Of course, this experiment describes an extreme situation in which the 
filter has to reconstruct the entire storm. As a representative example, in Figures 2-4 respectively 
the wind velocities, the simulated water velocities and the filtered water velocities at a certain time 
are shown. These and similar results show that, considering the limited number of measurement 
locations available, the filter performance is excellent.' 

Numerous experiments using field data have been performed with a model that covers the 
entire Continental Shelf as shown in Figures 5 and 6.16 The on-line measurement stations that are 
available in the North Sea are also shown in Figure 5. To illustrate the correction of the water 
velocities produced by the filter, in Figures 7 and 8 respectively the deterministic and filtered flow 
patterns in the southern North Sea at a certain time are drawn. Of course the correction is small 
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Figure 3. Simulated water velocities 
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Figure 4. Filtered water velocities 
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CONDITIONS 
Time Incr = 10.00 Minutes 
Grid size = 16000 meters 
W level openings 

velocity openings 
~ model grid boundary 
+ water level grid rule 
0 measurement locations 

Figure 5. Continental Shelf model 
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Figure 6 .  Depth contours of the Continental Shelf model 
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Figure 7. Deterministic flow pattern 
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. . . . . . . . .  ;A 

J 

..'. ,". . . . . . . . .  . . . . . . . . .  " 

.n 

.-- r. 

Figure 8. Filtered flow pattern 

with respect to the tidal flow. Clearly the filter does not introduce instabilities. To demonstrate 
the improvement of the water level predictions during stormy conditions obtained by using the 
water level data, in Figures 9 and 10 the deterministic as well as the filter predictions at respectively 
Southend and Ijmuiden are shown. Here the filter used the data up to 14 February, 2:OO h. Clearly 
the short-term predictions of the filter are much more accurate. Of course the improvement 
obtained by filtering the data available decreases with the prediction interval. 

7. CONCLUSIONS 

In this paper we have developed a data assimilation procedure based on Kalman filtering to 
incorporate water level measurements into a non-linear numerical tidal model. Numerous 
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Figure 9. Prediction of the water level at Southend 
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Figure 10. Prediction of the water level at Ijmuiden 
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experiments with simulated as well as field data show excellent filter performance and indicate 
that, in the weakly non-linear case, the suboptimal filter is very robust and does not introduce 
instabilities. The approach has recently been implemented to predict the water level along the 
Dutch coast on a routine basis. 
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